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Abstract. The physical meaning of bare and dressed scattering matrix singularities has been investigated.
Special attention has been attributed to the role of the well-known invariance of the scattering matrix with
respect to the field transformation of the effective Lagrangian. Examples of evaluating bare and dressed
quantities in various models are given.

PACS. 11.80.Gw Multichannel scattering – 13.60.Le Meson production – 13.75.Cs Nucleon-nucleon in-
teractions (including antinucleons, deuterons, etc.) – 14.20.Gk Baryon resonances with S = 0

This paper is a collection of different, sometimes con-
flicting standpoints presented at the BRAG 2007 pre-
meeting of the NSTAR 2007 Workshop. It is organized in
the following way: The introduction is written by A. Švarc,
sect. 2.1 by S. Capstick, sect. 2.2 by C. Hanhart, sect. 3.1
by S. Scherer, sect. 3.2 by J. Gegelia, sect. 4.1 by M. Gian-
nini and E. Santopinto, sect. 4.2 by T.-S.H. Lee, T. Sato
and N. Suzuki and the conclusion by A. Švarc, S. Capstick
and L. Tiator.

1 Introduction

Establishing a well-defined point of comparison between
experimental results and theoretical predictions has for
decades been one of the main issues in hadron spec-
troscopy, and the present status is still not satisfactory.
Experiments, via partial wave (PWA) and amplitude anal-
ysis (AA), can give reliable information on scattering ma-
trix singularities, while quark model calculations usually

⋆ Original article based onmaterial presented at NSTAR2007.
a e-mail: tiator@kph.uni-mainz.de

give information on resonant states spectrum in the first-
order impulse approximation (bare/quenched mass spec-
trum). And these two quantities are by no means the same.
Up to now, in the absence of a better recipe, these quanti-
ties have usually been directly compared, but the aware-
ness has ripen that the clear distinction between the two
has to be made. One either has to dress quark-model res-
onant states spectrum and compare the outcome to the
experimental scattering matrix poles, or to try to take
into account all self-energy contributions which are im-
plicitly included in the measured scattering matrix pole
parameters, make a model-independent undressing proce-
dure and compare the outcome to the impulse approxima-
tion quark-model calculations. The first options seems to
be feasible but complicated, but the latter one seems to be
impossible due to very general field theory considerations.

We report on investigating both options.
An attempt how to unquench the constituent quark

model of ref. [1], together with describing all accompany-
ing complications, is presented. The procedure seems to
be cumbersome, but straightforward.

The second option, undressing the experimentally ob-
tained scattering matrix singularities, however, seems
to be inherently model dependent due to very general
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arguments originating from the local field theory. A simple
model, illustrating this claim, is presented.

In spite of looking entirely dissimilar, the problem of
model-independent undressing of full scattering matrix
singularities seems to be strongly correlated to the recent
controversy whether the off-shell effects are measurable or
not. It is therefore essential to extend the discussion to
the (un)measurability of off-shell effects as well.

For decades the off-shell properties of two-body ampli-
tudes seemed to be a legitimate measurable quantity, and
numerous attempts to get hold of it in nucleon-nucleon
bremsstrahlung and real and virtual Compton scattering
on the nucleon have been made. However, in early 2000s it
became apparent that strong field-theoretical arguments
do not speak in favor of this claim [2–4]. It seems that it
is very likely that the well-known invariance of the scat-
tering matrix with respect to the field transformation of
the effective Lagrangian [5] makes it possible to transform
the off-shell effects into the contact terms for diagrams of
the same power counting level. This effectively makes the
off-shell effects an unmeasurable quantity.

When applied to the effective two-body meson-nucleon
amplitudes, this statement implies that the ability of cou-
pled-channel formalisms to separate the self-energy term
and evaluate the bare scattering matrix poles (singulari-
ties in which the meson-exchange effects are fully taken
into account) is a model-dependent procedure. Namely,
any method for evaluating self-energy contributions un-
avoidably demands a definite assumption on the ana-
lytic form of the off-shell interaction terms, hence intro-
duces model-dependent and consequently unmeasurable
hadronic shifts.

The invariance of different parameterizations of the
scattering matrix singularities with respect to field redef-
initions is also the object of our study. Scattering ma-
trix poles are nowadays quantified in two dominant ways:
either as Breit-Wigner parameters, i.e. parameters of a
Breit-Wigner function which is used to locally represent
the experimentally obtainable T -matrix, or as scatter-
ing matrix poles (either T or K). In spite of the fact
that it is since Hoehler’s analysis [6,7] quite commonly
accepted that Breit-Wigner parameters are necessarily
model-dependent quantities, they are still widely used to
quantify the scattering matrix poles. Only recently the
scattering matrix poles are being shown in addition. We
demonstrate that within the framework of effective field
theory, scattering matrix poles are, contrary to Breit-
Wigner parameters, unique with respect to arbitrary field
redefinitions.

Bare and dressed scattering matrix quantities have for
more then a decade been calculated and presented within
a framework of various coupled-channel models [8,9], and
a definite correlation between scattering matrix singular-
ities and quark-model quantities has been in general es-
tablished [10]. However, the most direct connection be-
tween full scattering matrix singularities and hadron mod-
els with confinement forces has been offered in [11–13] for
the various versions of dynamical coupled-channel model.
In these models the bare N∗ states are understood as

the excited states of the nucleon if its coupling with the
reaction channels is turned off, so the authors naturally
speculate that the bare N∗ states of these models cor-
respond to the predictions from a hadron model with
confinement force, such as the well-developed constituent
quark model with gluon-exchange interactions. The role
of hadronic shift model dependence, however, is not ex-
plicitly discussed.

A simple conclusion emerges: dressed scattering ma-
trix singularities are the best, model-independent meeting
point between quark model predictions and experiments,
and bare quantities in coupled-channel models remain to
be legitimate quantities to be extracted only within a
framework of a well-defined model. To understand and
interpret them correctly, one has to keep track of the ex-
istence of the hadronic mass shifts produced by off-shell
ambiguities, and take them fully into account.

2 Dressing and undressing scattering matrix

singularities

2.1 Unquenching the quark model

The usual prescription for calculation of the masses of
baryons is to ignore the effects of decay-channel cou-
plings, which is the assumption that the states are in-
finitely long lived. Given that baryon widths are compa-
rable to the mass splittings between similar states caused
by short-range interactions between the quarks, the effects
on baryon masses of continuum (baryon-meson) states,
or equivalently qqq-qq̄ components, clearly cannot be ig-
nored. The problem is that there are many distinct inter-
mediate states which can contribute substantially to the
self-energies of baryons through baryon-meson loops, be-
cause of the presence of many thresholds in the resonance
region. Calculations of the effect of two-meson intermedi-
ate states in mesons have been carried out, especially for
the interesting problem of the ω-ρ mass difference [14,15]
which illustrate the complications which arise in the case
of baryons. In order to calculate the self-energy of a baryon
B(0) due to a particular baryon-meson intermediate state
B′(−k)C(k), as in fig. 1, we require a calculation of the de-
pendence of the vertex MBB′C(k) on the magnitude k of
the loop momentum k. This in turn requires a model of the
spectrum (including states not seen in experiment), which
provides wave functions for the baryons, and a model of
the B(0) → B′(−k)C(k) decay vertices. A popular choice
for the former is some form of constituent quark model,
and for the latter is a pair-creation model such as the
3P0 model illustrated in fig. 2, where baryons decay by
the creation of a quark-antiquark pair with the quantum
numbers of the vacuum.

In order to self-consistently calculate the masses of
baryons in the presence of baryon-meson intermediate
states, one possible approach [16] is as follows. The masses
and decays are calculated using a three-quark Hamiltonian
Hqqq and a pair-creation Hamiltonian Hpc, that depend on
strong coupling, quark mass, and string tension parame-
ters α0

s, m0
i , and b0, etc., and a pair-creation coupling
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Fig. 1. Calculation of baryon self-energies in the quark model.

Fig. 2. Pair-creation model of baryon decays.

strength γ. These parameters are usually determined by a
fit to the (dressed) spectrum EB and decay partial widths
in the absence of Fock space components higher than qqq,

EB = M0
B(α0

s,m
0
i , b

0, . . .).

The correction due to the loop B → B′C is

EB = M0
B(α0

s,m
0, b0, . . .) + ΣB′C(EB , EB′ ;α0

s,m
0
i , b

0),

where

ΣB′C = P

∫

d3k
|〈B′(−k)C(k)|Hpc|B(0)〉|

2

EB −
√

E2
B′ + k2 −

√

E2
C + k2 + iǫ

.

The imaginary part of the loop integral is ΓB→B′C/2. A
sum is to be performed over baryon-meson intermediate
states B′C, and the parameters α0

s, m0
i , b0, and γ, . . . are

to be adjusted for self-consistent solution with EB equal
to the dressed baryon mass. In principle one should solve
similar equations for the meson masses EC .

This procedure is equivalent to second-order perturba-
tion theory in the decay Hamiltonian Hpc, and allows cal-
culation of the (momentum-space) continuum B′C com-
ponent of the dressed baryon states, and also the mixing
B → B′C → B′′ between different baryon states caused
by the continuum intermediate states.

Calculation of this kind have been applied to N , Δ, Λ,
Σ and Σ∗ ground and (singly) orbitally excited states us-
ing intermediate states made up of ground-state baryons,
with the pseudoscalar mesons π, K, η, η′ in ref. [17] and
these pseudoscalar mesons plus the vector mesons ρ, ω and
K∗ in refs. [18–20]. Because there are many baryon-meson
thresholds nearby in energy, for example the Nρ and Δρ
thresholds are close to those of N(1535)π or Λ(1405)K,
one should not restrict the intermediate meson states to
π, or even all pseudoscalars, or the intermediate baryon
states to N and Δ, or even all octet and decuplet ground
states.

Zenczykowski [18] showed that if one assumes ex-
act SU(3)f ⊗ SU(2)spin symmetry and only ground-state
baryons and mesons exist, then all octet and decuplet
baryons have the same mass M0

B and the same wave func-
tion, and also all pseudoscalar and vector ground-state

mesons have the same mass M0
C and the same wave func-

tion, and all self-energy loop integrals are the same, apart
from SU(6)spin-flavor factors at the vertices. Under these
conditions we expect the sum of self-energy contributions
to the nucleon and Δ(1232) masses to be identical. Inter-
estingly, the sum of the squares of the SU(6)spin-flavor fac-
tors is the same only if we include all baryon-meson combi-
nations (non-strange, strange, or both) consistent with the
conserved quantum numbers, including both pseudoscalar
and vector mesons. This is true of the self-energies of any
ground-state baryon, and is also true if the 3P0 model
is used to calculate the vertex factors, as it reduces to
SU(6)W in this limit.

Away from the SU(3)f limit, Tornqvist and Zenczy-
kowski [21] were able to show that, with the introduc-
tion of a simple pattern of SU(3)f breaking present in
the ground-state baryon and meson mass spectra, the
usual SU(6) relations for baryon masses are present in
the dressed baryon masses calculated to first order in the
symmetry breaking parameters. This suggests that we can
interpret SU(6) symmetry breaking effects as partly due
to spin- and flavor-dependent interactions between the
quarks, and partly due to loop effects.

It is clear from this and other calculations that the
effects of these self-energies on the spectrum are substan-
tial. Zenczykowski [18] finds many mass splittings close to
those of the dressed pole parameters from analyses, with-
out spin- and flavor-dependent interactions between the
quarks. Other calculations show splittings in the dressed
P -wave (lowest orbitally) excited baryons which resemble
spin-orbit effects [17,19,20]. These could cancel against
those expected from other sources and provide a solu-
tion to the spin-orbit problem in certain quark models
of baryon masses.

These calculations lack a self-consistent treatment of
external and intermediate baryon states, and so it is
not clear that the sum over intermediate baryon-meson
states has converged. Geiger and Isgur [14] demonstrated
that this sum does converge, albeit slowly, using a non-
relativistic quark model for baryon masses and wave func-
tions and a 3P0 model for their decays. A covariant model
based on the Schwinger-Dyson-Bethe-Salpeter approach
was shown to lead to faster convergence in ref. [15]. A
study of the dressed masses of N and Δ ground and
P -wave excited baryons [22] which involves intermediate
pseudoscalar and vector ground-state mesons and many
intermediate baryons (ground states, and N , Δ, Λ, Σ, Σ∗

excited states up to the second band of negative-parity
states at roughly 2100MeV), representing hundreds of in-
termediate states, is underway. Vertex form factors are
calculated analytically using mixed relativized-model [23]
wave functions and the 3P0 model [24].

This study shows that the usual 3P0 model gives ver-
tices which are too hard, giving large contributions from
high loop momenta. They can be softened by adopting a
pair-creation form factor which decreases as the relative
momentum of the created quark and antiquark increases.
This calculation is currently being reworked to allow self-
consistent renormalization of the quark model parameters.
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As an example, in ref. [22] the strong coupling parameter
α0

s was reduced in order to take into account the addi-
tional Δ-N splitting in the sums over baryon-meson loops
contributing to the self-energies of both of these states.
Similarly, in their calculation of these effects in mesons,
Geiger and Isgur [14] showed that the formation of an in-
termediate meson pair was equivalent to string breaking,
which has the effect of renormalizing the meson string ten-
sion. Barnes and Swanson [25] have examined shifts in the
charmonium spectrum due to D, D∗, Ds and D∗

s meson
pairs.

In conclusion, the next Fock space component is
likely more important than differences among qqq mod-
els. Calculating its effects requires the use of a full set of
SU(6)-related intermediate states, spatially excited inter-
mediate baryons, and a careful treatment of mixing effects.
Renormalization of the parameters in the quark model pa-
rameters such as αs, the quark masses, the string tension,
and the pair-creation strength needs to be carried out
systematically. This requires examining the mass shifts
of more than just N , Δ and their negative-parity exci-
tations. Decay vertices need additional suppression when
the dressed masses of external states are well above the
threshold for an intermediate state, which is the case in
relativistic models.

2.2 Undressing the dressed scattering matrix
singularities

To get a better understanding of the relation of bare quan-
tities to dressed quantities it is sufficient to study a system
of two nucleon like states (N and R) coupled to a scalar
field (σ) [26]. A possible Lagrangian reads

L1 = N̄ (i∂/ − MN ) N + R̄
(

i∂/ − M0
R

)

R

+
1

2

(

∂μσ∂μσ − m2
)

+ gσ
(

R̄N + N̄R
)

. . . . (1)

Here the superscript 0 indicates that masses are bare
quantities that undergo dressing beyond tree level1. The
resulting vertex is shown as diagram (a) in fig. 3. The
dots indicate possible more complex terms, like contact
terms of the type σ2R̄R (see fig. 3(c)). However, in phe-
nomenological studies those are rarely included. From this
Lagrangian we may now calculate observables like scatter-
ing amplitudes. To keep things simple we focus only on the
self-energy of the R field. The corresponding diagram is
shown in fig. 4(a). The real part of this diagram provides
the so-called hadronic shift —the difference between the
bare mass and the physical mass— and the imaginary part
the width.

A theorem based on very general assumptions in
field theory states that if two fields φ and χ are related
non-linearly (φ = χF (χ) with F (0) = 1) then the same

1 In principle also the coupling g and the mass of σ and
N are bare quantities, however, to ease notation we drop the
corresponding superscript, for in what follows we focus solely
on the self-energy of the R field.

N R

u

N R

u

RR

u u

(a) (b) (c)

Fig. 3. Vertices from the interaction Lagrangians of eqs. (1)
and (3).

observables arise if one calculates with φ using L(φ) or
with χ using L(χF (χ)) [27]. Thus instead of the fields in
eq. (1) we may switch to a modified nucleon field defined
through

N −→ N ′ = N + ασR,

where α is an arbitrary, real parameter. Expressed in
terms of N ′ the interaction part of the original Lagrangian
now reads

LI
1′ = gσ

(

R̄N ′ + N̄ ′R
)

− ασ
(

R̄ (i∂/ − MN ) N ′ + h.c.
)

+σR̄
[

α2 (i∂/ − MN ) − 2gα
]

Rσ + . . . . (2)

In addition to the vertex of the previous Lagrangian
now two new structures appear: a momentum-dependent
RNσ vertex (depicted in fig. 3(b)) and a σ2R̄R ver-
tex (depicted in fig. 3(c)). The resulting contributions
to the R self-energy from this Lagrangian are shown in
fig. 4(a)–(d). The field-theoretic theorem quoted above
gives that the total self-energy contribution from the
modified Lagrangian is identical to that of the original
Lagrangian with the same parameters. Especially, the
hadronic shift remains the same and it seems that indeed it
is a well-defined quantity. However, the problem is that we
do not know the true hadronic Lagrangian. Thus, starting
from eq. (1) is as justified as starting from the following
interaction Lagrangian:

LI
2 = gσ

(

R̄N + N̄R
)

− ασ
(

R̄ (i∂/ − MN )N + h.c.
)

+ . . . .
(3)

Obviously, the only difference to the previous equation is
that the σ2R̄R vertex was abandoned. On the one-loop
level thus the only difference compared to the previous
expression for the R self-energy is that tadpole diagrams
were removed. Since this class of diagrams does not lead to
non-analyticities, their effect can always be absorbed into
the bare mass and the wave function renormalization of
the R field. Therefore, with properly adjusted parameters,
the self-energy is the same to one loop between the theory
that follows from L1 and that from L2.

Is there any way in practise to decide, which one of
the two Lagrangians is to be preferred? The answer to
this question is no for the following reasons: although the
σ2R̄R contact term can contribute to the R self-energy at
three-loop order, this is of no practical significance, since
not only has any effective Lagrangian a too limited range
of applicability and accuracy to allow for the extraction
of such effects but also a complete treatment should in-
clude anyway direct σR → σR transitions in both La-
grangians in addition to the terms given explicitly above.
The latter argument also applies to information deduced
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(a) (b) (c) (d)

Fig. 4. Self-energies for the R field to one-loop order from toy model I (eq. (1)) and toy model II (eq. (3)).

from σR → σR cross-sections. Therefore there is in prac-
tice no way to decide which one of the two interaction
Lagrangians —eq. (1) or eq. (3)— is to be preferred. As
outlined above, however, quantities like the self-energies
of the resonance R are different in the two approaches
and consequently the bare masses as extracted from fits
to experiment are different. We therefore conclude that
bare masses (or in general bare quantities) do not have
any physical significance.

The question studied here is very closely linked to the
question of measurability of off-shell effects. The argument
just presented can also be used as yet another illustra-
tion that off-shell effects are not observable. This already
follows from a comparison of eq. (1) and eq. (2). As ar-
gued above both lead to identical observables. Especially,
the on-shell RNσ vertex that can be related to the decay
width from R → σN is the same for both models. How-
ever, in our example for off-shell nucleons the vertex can
be anything. In general, within a consistent field theory
off-shell effects either can be absorbed into counter terms
or have to cancel exactly. The same issue is discussed for
bremsstrahlung in ref. [4]. Another illustrative example of
the cancellation of off-shell effects is provided in ref. [28]
for the reaction NN → NNπ.

It should be stressed that the question in focus here is
very different to that of the relation between two-nucleon
and three-nucleon observables and the presence of three-
body forces. The main difference is that in the few nu-
cleon systems it is possible to construct three-body forces
that are consistent with the two-nucleon interaction used,
e.g. within effective field theory —for a recent review
see ref. [29]. Changing the two-nucleon interactions leads
also to controlled changes in the three-body forces in the
sense sketched above. However, what would be needed for
a model-independent extraction of bare hadron masses
would be a method to identify the hadronic interaction
that is the one that matches to the particular quark model,
thus a connection is needed between two systems with
very different degrees of freedom. We argue that it follows
from the reasoning above that this identification cannot
be made as a matter of principle. However, the inclusion
of hadronic loops within the quark model, as sketched,
e.g. in the presentation by Simon Capstick, is obviously
justified.

We therefore have to conclude that the only quanti-
ties relevant for spectroscopy that can be extracted from
experiment are resonance poles and the corresponding
residues. However, this is still a lot for both quantities
contain important structure information like the amount
of SU(3) violation or even the very nature of the state [30].
An extraction of poles and residues from the data needs

coupled-channel codes of the type of refs. [31–33] with the
correct analytical properties and consistent with unitarity.
Only then a controlled analytic continuation to the com-
plex plain is possible.

3 Field theory considerations

3.1 From off-shell to on-shell kinematics

It is a natural and legitimate question to ask whether
the off-shell behavior of particular interaction vertices is
unique and whether it is possible to extract such behavior
from empirical information similarly as one, say, extracts
the electromagnetic form factors of the nucleon from elas-
tic electron scattering. In this context one might think of
the electromagnetic interaction of a bound (off-shell) nu-
cleon or the investigation of the off-shell nucleon-nucleon
amplitude entering the nucleon-nucleon bremsstrahlung
process. For the case of pions, Compton scattering [34]
and pion-pion bremsstrahlung [2] were discussed using chi-
ral perturbation theory (ChPT) at lowest order. It was
shown that off-shell effects with respect to the effective
pion fields depend on both the model used and the choice
of representation for the fields. From that the conclusion
was drawn that off-shell effects are not only model depen-
dent but also representation dependent, making a unique
extraction of off-shell effects impossible. The spin-1/2 case
was discussed in ref. [3].

A related situation occurs when one is interested in
corrections to current-algebra results obtained from the
partially conserved axial-vector current (PCAC) relation

∂μAμ,a = M2
πFπΦa, (4)

where Aμ,a is the isovector axial-vector current and Φa

is a renormalized field operator creating and destroying
pions; Mπ and Fπ denote the pion mass and decay con-
stant, respectively. While predictions of current algebra
and the PCAC relation involve the so-called soft-pion
limit, limq0→0 limq→0[· · · ], amplitudes for physical pions
are to be taken at q2 = M2

π . Can the connection between
soft-pion kinematics and on-shell kinematics be uniquely
determined? The answer is yes, if the problem is entirely
formulated in terms of the relevant QCD Green functions.

We will illustrate these issues in the framework of
ChPT [35] which establishes a systematic connection with
the underlying field theory, namely, QCD. Let us first dis-
cuss off-shell effects with respect to the effective fields.
To that end, we consider ππ scattering at lowest order in
ChPT (see sect. 4.6.2 of ref. [36] for more details):

L2 =
F 2

π

4
Tr[∂μU(∂μU)†] +

F 2
πM2

π

4
Tr(U + U†),
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where M2
π = 2Bm̂. B is related to the quark condensate

〈q̄q〉0 in the chiral limit and m̂ is the average of the u- and
d-quark masses [35]; U is an SU(2)-matrix containing the
pion fields. We will use two alternative parameterizations
of U :

U(x) =
1

Fπ
[σ(x) + iτ · π(x)] , σ(x) =

√

F 2
π − π2(x),

U(x) = exp

[

i
τ · φ(x)

Fπ

]

= cos

(

φ

Fπ

)

+ iτ · φ̂ sin

(

φ

Fπ

)

.

The σ and exponential parameterizations are related by a
field transformation (change of variables)

π

Fπ
= φ̂ sin

(

φ

Fπ

)

=
φ

Fπ

(

1 −
1

6

φ2

F 2
π

+ . . .

)

.

The relevant ππ interaction Lagrangians read

L4π
2 =

1

2F 2
π

∂μπ · π∂μπ · π −
M2

π

8F 2
π

(π2)2,

L4φ
2 =

1

6F 2
π

(∂μφ · φ∂μφ · φ−φ2∂μφ · ∂μφ) +
M2

π

24F 2
π

(φ2)2.

Observe that the two interaction Lagrangians depend dif-
ferently on the respective pion fields. For Cartesian isospin
indices a, b, c, d the Feynman rules for the scattering pro-
cess πa(pa) + πb(pb) → πc(pc) + πd(pd) read, respectively,

M4π
2 = i

(

δabδcd s−M2
π

F 2
π

+δacδbd t−M2
π

F 2
π

+δadδbc u−M2
π

F 2
π

)

,

M4φ
2 = M4π

2

−
i

3F 2
π

(

δabδcd + δacδbd + δadδbc
)

(Λa + Λb + Λc + Λd) ,

where we introduced Λk = p2
k − M2

π and the usual Man-
delstam variables s = (pa + pb)

2, t = (pa − pc)
2, and

u = (pa − pd)
2 satisfying s + t + u = p2

a + p2
b + p2

c + p2
d.

If the initial and final pions are all on the mass shell, i.e.,
Λk = 0, the scattering amplitudes are the same, in agree-
ment with the equivalence theorem of field theory [37].
On the other hand, if one of the momenta of the external

lines is off mass shell, the amplitudes M4π
2 and M4φ

2 dif-
fer. In other words, a “direct” calculation of ππ scattering
in terms of the effective fields gives a unique result inde-
pendent of the parameterization of U only for the on-shell
matrix element.

According to the standard argument in nucleon-
nucleon bremsstrahlung one would now try to discrimi-
nate between different on-shell equivalent ππ amplitudes
through an investigation of the reaction πa(pa)+πb(pb) →
πc(pc) + πd(pd) + γ(k). This claim was critically ex-
amined in refs. [2,3]. To that end the electromagnetic
field is included through the covariant derivative DμU =
∂μU + ieAμ[Q,U ], where Q = diag(2/3,−1/3) is the
quark charge matrix. In the σ parameterization, the to-
tal bremsstrahlung amplitude is given by the sum of only
such diagrams, where the photon is radiated off the initial
and final charged pions, respectively. One may then ask

how the different off-shell behavior of the ππ amplitude of

M4φ
2 enters into the calculation of the bremsstrahlung am-

plitude. Observe, in this context, that the exponential pa-
rameterization generates electromagnetic interactions in-
volving 2n pion fields, where n is a positive integer. In
the exponential parameterization an additional 4φγ in-
teraction term relevant to the bremsstrahlung process is
generated. Hence the total tree level amplitude now con-
tains an additional four-pion-one-photon contact diagram.
Combining the contribution due to the off-shell behavior

in the ππ amplitude M4φ
2 with the contact-term contribu-

tion, we found a precise cancelation of off-shell effects and
contact interaction such that the final results are the same
for both parameterizations. This is once again a manifes-
tation of the equivalence theorem [37]. What is even more
important in the present context is the observation that
the two mechanisms, i.e. contact term vs. off-shell effects,
are indistinguishable since they lead to the same measur-
able amplitude.

Now, what about the off-shell behavior of QCD
Green functions? The method developed by Gasser and
Leutwyler [35] deals with Green functions of color-neutral,
Hermitian quadratic forms involving the light-quark fields
q = (u, d)T of QCD and their interrelations as expressed in
the Ward identities. In particular, these Green functions
can, in principle, be calculated for any value of squared
momenta even though ChPT is set up only for a low-
energy description. For the discussion of ππ scattering one
considers the four-point function [35]

Gabcd
PPPP (xa, xb, xc, xd) ≡ 〈0|T [P a(xa) · · ·P d(xd)]|0〉 (5)

with the pseudoscalar quark density P a = iq̄γ5τ
aq. In

order so see that eq. (5) can indeed be related to ππ scat-
tering, we investigate the matrix element of P a evaluated
between a single-pion state and the vacuum [35]:

〈0|P a(0)|πb(q)〉 ≡ δabGπ. (6)

The coupling of an external pseudoscalar source p to the
Goldstone bosons is given by

Lext = i
F 2

πB

2
Tr(pU† − Up)

=

{

2BFπpaπa,

2BFπpaφa[1 − φ 2/(6F 2
π ) + . . .],

(7)

where the first and second lines refer to the σ and expo-
nential parameterizations of U , respectively. From eq. (7)
we obtain Gπ = 2BFπ independent of the parameteriza-
tion used which, since the pion is on-shell, is a consequence
of the equivalence theorem [37]. As a consistency check,
let us verify the PCAC relation from the QCD Lagrangian

∂μAμ,a = m̂iq̄γ5τ
aq ≡ m̂P a,

evaluated between a single-pion state and the vacuum.
The axial-vector current matrix element obtained from L2

reads
〈0|Aμ,a(x)|πb(q)〉 = iqμFπe−iq·xδab. (8)
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Taking the divergence implies M2
πFπ = m̂Gπ. In other

words,

Φa(x) ≡
m̂P a(x)

M2
πFπ

(9)

can serve as a so-called interpolating pion field in the LSZ
reduction formula. Using eq. (9), the reduction formula
relates the S-matrix element of ππ scattering to the QCD
Green function involving four pseudoscalar densities

Sfi =

(

−i

Gπ

)4

(p2
a − M2

π) · · · (p2
d − M2

π)

×

∫

d4xa · · · d
4xd e−ipa·xa · · · eipd·xdGabcd

PPPP (xa, xb, xc, xd).

Using translational invariance, let us define the momen-
tum space Green function as

(2π)4δ4(pa + pb + pc + pd)F
abcd
PPPP (pa, pb, pc, pd) =

∫

d4xad4xbd
4xcd

4xd e−ipa·xae−ipb·xbe−ipc·xce−ipdxd

×Gabcd
PPPP (xa, xb, xc, xd),

where we define all momenta as incoming. The usual rela-
tion between the S-matrix and the T -matrix, S = I + iT ,
implies for the T -matrix element 〈f |T |i〉 = (2π)4δ4(Pf −
Pi)Tfi and, finally, for M = iTfi:

M =
1

G4
π

⎡

⎣

∏

k=a,b,c,d

lim
p2

k
→M2

π

(p2
k − M2

π)

⎤

⎦ F abcd
PPPP (10)

with F abcd
PPPP ≡ F abcd

PPPP (pa, pb,−pc,−pd). We will now de-
termine the Green function F abcd

PPPP using the σ and expo-
nential parameterizations for U . In the first parameteriza-
tion we only obtain a linear coupling between the external
pseudoscalar field and the pion field (see eq. (7)) so that
only one Feynman diagram contributes

F abcd
PPPP = (2BFπ)4

i

p2
a − M2

π

· · ·
i

p2
d − M2

π

M4π
2 . (11)

The Green function F abcd
PPPP depends on six independent

Lorentz scalars which can be chosen as the squared invari-
ant momenta p2

k and the three Mandelstam variables s, t,
and u satisfying the constraint s + t + u =

∑

k p2
k.

Using the second parameterization we will obtain a
contribution which is of the same form as eq. (11) but with

M4π
2 replaced by M4φ

2 . Clearly, this is not yet the same
result as eq. (11) because of the terms proportional to Λk

in M4φ
2 . However, in this parameterization the external

pseudoscalar field also couples to three pion fields (see
eq. (7)), resulting in four additional contributions

ΔaF abcd
PPPP + · · · + ΔdF

abcd
PPPP

with

ΔaF abcd
PPPP (pa, pb,−pc,−pd) =

(2BFπ)4
i

p2
a − M2

π

· · ·
i

p2
d − M2

π

×
iΛa

3F 2
π

(δabδcd + δacδbd + δadδbc), (12)

and analogous expressions for the remaining ΔF ’s. In
total, we find a complete cancelation with those terms
proportional to Λk (in the second parameterization) and
the end result is identical with eq. (11)! Finally, using
Gπ = 2BFπ and inserting the result of eq. (11) into
eq. (10) we obtain the same scattering amplitude as in

the “direct” calculation of M4π
2 and M4φ

2 evaluated for
on-shell pions.

This example serves as an illustration that the method
of Gasser and Leutwyler generates unique results for
the Green functions of QCD for arbitrary four-momenta.
There is no ambiguity resulting from the choice of vari-
ables used to parameterize the matrix U in the effective
Lagrangian. These Green functions can be evaluated for
arbitrary (but small) four-momenta. Using the reduction
formalism, on-shell matrix elements such as the ππ scat-
tering amplitude can be calculated from the QCD Green
functions. The result for the ππ scattering amplitude as
derived from eq. (10) agrees with the “direct” calcula-

tion of the on-shell matrix elements of M4π
2 and M4φ

2 .

On the other hand, the Feynman rules of M4π
2 and M4φ

2
when taken off-shell, have to be considered as intermedi-
ate building blocks only and thus need not be unique.

3.2 Model (in)dependence of pole positions and
Breit-Wigner parameters

A popular definition of masses of unstable particles cor-
responding to a (relativistic) Breit-Wigner formula makes
use of the zero of the real part of the inverse propagator.
It has been shown that such a definition leads to field re-
definition and gauge-parameter dependence of the mass
starting at two-loop order [38–44]. In contrast, defining
the mass and width in terms of the complex-valued po-
sition of the pole of the propagator leads to both field
redefinition and gauge-parameter independence.

As the baryon resonances are thought to be described
by QCD, with the progress of lattice techniques and, es-
pecially, the low-energy effective theories (EFT) of QCD
(see, e.g., [45,35,46–50] and references therein) the ques-
tion of defining baryon resonance masses becomes impor-
tant. Here we examine this issue for the Δ-resonance. As
discussed in ref. [7], the conventional resonance mass and
width determined from generalized Breit-Wigner formu-
las have problems regarding their relation to the S-matrix
theory and suffer from a strong model dependence. Here,
we will show that these parameters, in addition, depend
on the field redefinition parameter in a low-energy EFT
of QCD.

For simplicity we ignore isospin and consider an EFT
of a single nucleon, pion, and Δ-resonance. Defining

Λμν = −(i ∂/−mΔ)gμν+i (γμ∂ν+γν∂μ)−iγμ∂/γν−mΔγμγν ,

the free Lagrangian is given by

L0 = ψ̄μ Λμν ψν + Ψ̄(i ∂/ − mN )Ψ +
1

2
∂μπ∂μπ. (13)
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Here, the vector-spinor ψμ describes the Δ in the Rarita-
Schwinger formalism [51], Ψ stands for the nucleon field
with mass mN , and π represents the pion field which we
take massless to simplify the calculations. The interaction
terms have the form

Lint = g ∂νπ ψ̄μ (gμν − γμγν) Ψ + H.c. + . . . , (14)

where the ellipsis refers to an infinite number of interac-
tion terms which are present in the EFT. These terms also
include all counter terms which take care of divergences
appearing in our calculations. Although our results are
renormalization scheme independent, for simplicity we use
the dimensional regularization with the minimal subtrac-
tion scheme.

Let us consider the field transformation

ψ̄μ → ψ̄μ + ξ ∂μπΨ̄ , ψν → ψν + ξ ∂νπΨ, (15)

where ξ is an arbitrary real parameter. When inserted into
the Lagrangians of eqs. (13) and (14), the field redefinition
generates additional interaction terms. The terms linear in
ξ are given by

Ladd int = ξ ∂μπ Ψ̄ Λμν ψν + ξ ∂νπ ψ̄μ Λμν Ψ. (16)

Because of the equivalence theorem physical quantities
cannot depend on the field redefinition parameter ξ. The
complex-valued position of the pole of the Δ propagator
does not depend on ξ. In contrast, the mass and width
defined via (the zero of) the real and imaginary parts of
the inverse propagator depend on ξ at two-loop order.

The dressed propagator of the Δ in n space-time di-
mensions can be written as

− i

[

gμν −
γμγν

n − 1
−

pμγν − γμpν

(n − 1)mΔ
−

(n − 2)pμpν

(n − 1)m2
Δ

]

×
1

p/ − mΔ − Σ1 − p/Σ6
+ pole-free terms, (17)

where we parameterize the self-energy of the Δ as

Σ1(p
2)gμν + Σ2(p

2)γμγν + Σ3(p
2)pμγν + Σ4(p

2)γμpν

+Σ5(p
2) pμpν + Σ6(p

2) p/gμν + Σ7(p
2) p/γμγν

+Σ8(p
2) p/pμγν + Σ9(p

2) p/γμpν + Σ10(p
2) p/pμpν . (18)

The complex pole z of the Δ propagator is obtained by
solving the equation

z − mΔ − Σ1(z
2) − z Σ6(z

2) = 0. (19)

The pole mass is defined as the real part of z.
On the other hand, the mass mR and width Γ of the

Δ-resonance are often determined from the real and imagi-
nary parts of the inverse propagator (corresponding to the
Breit-Wigner parametrization), i.e.,

mR − mΔ − Re Σ1(m
2
R) − mR Re Σ6(m

2
R) = 0,

Γ = −2 Im Σ1(m
2
R) − 2mR Im Σ6(m

2
R). (20)

We have calculated the Δ mass using both definitions and
analyzed their ξ-dependence to first order (for details see
ref. [52]).

(a) (b)

(c) (d)

Fig. 5. ∆ self-energy diagrams. Solid, dashed, and double lines
correspond to nucleon, pion, and ∆, respectively.

The Δ self-energy at one loop-order is given by the
diagram in fig. 5(a). The two-loop contributions to the Δ
self-energy are given in fig. 5(b)–(d). We are interested in
terms linear in ξ.

To find the pole of the propagator we insert its loop
expansion

z = mΔ + δ1z + δ2z + . . . (21)

in eq. (19) and solve the resulting equation order by order.
The one-loop diagram results in the ξ-independent ex-

pression for δ1z. Calculating diagram (b) and (c) we find
that they give vanishing contributions. The ξ-dependent
contributions in δ2z, generated by the one-loop diagram
and by diagram (d) exactly cancel each other leading to
the ξ-independent pole of the propagator.

We perform the same analysis inserting the loop ex-
pansion of mR,

mR = mΔ + δ1m + δ2m + . . . , (22)

in eq. (20). For δm1 the one-loop diagram gives a ξ-
independent expression. On the contrary, the ξ-dependent
contributions in δ2m, generated by the one-loop diagram
and by diagram (d) do not cancel, thus leading to a
ξ-dependent mass mR. An analogous result holds for the
width Γ obtained from eq. (20).

To conclude, we addressed the issue of defining the
mass and width of the Δ-resonance in the framework of a
low-energy EFT of QCD. In general, the scattering ampli-
tude of a resonant channel can be presented as a sum of the
resonant contribution expressed in terms of the dressed
propagator of the resonance and the background contribu-
tion. The resonant contribution defines the Breit-Wigner
parameters through the real and imaginary parts of the
inverse (dressed) propagator. The resonant part and the
background separately depend on the chosen field vari-
ables, while the sum is of course independent of this choice.
We have performed a particular field transformation with
an arbitrary parameter ξ in the effective Lagrangian. In a
two-loop calculation we have demonstrated that the mass
and width of the Δ-resonance determined from the real
and imaginary parts of the inverse propagator depend on
the choice of field variables. On the other hand, the com-
plex pole of the full propagator does not depend on the
field transformation parameter ξ.

The above conclusions are not restricted to the con-
sidered toy model or EFT in general. Rather, our results
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are a manifestation of the general feature that the (rel-
ativistic) Breit-Wigner parametrization leads to model-
and process-dependent masses and widths of resonances.
Although in some cases (like the Δ-resonance) the back-
ground has small numerical effect on the Breit-Wigner
mass, still the pole mass and the width should be consid-
ered preferable as these are free of conceptual ambiguities.

4 Bare and dressed quantities within a

well-defined model

4.1 Longitudinal and transverse helicity amplitudes of
nucleon resonances in a constituent quark model
—bare vs. dressed resonance couplings

Many models have been built and applied to the descrip-
tion of hadron properties. An important role is played
by Constituent Quark Models (CQM), in which quarks
are considered as effective degrees of freedom. There are
many versions of CQM, which differ according to the
chosen quark dynamics: h.o. and three-body force [53],
algebraic [54], hypercentral [55], Goldstone boson ex-
change [56], instanton [57]. Here we report some results
of the hypercentral CQM (hCQM) [55] on the longitudi-
nal and transverse helicity amplitudes of the nucleon res-
onances. In this model, the quark interaction is assumed
to be given by a hypercentral potential

V (x) = −τ/x + αx, x =
√

ρ2 + λ2, (23)

where x is the hyperradius expressed in terms of the in-
ternal Jacobi coordinates ρ and λ. A Coulomb-like plus
linear confinement form of the potential is supported by
recent lattice QCD evaluations of the quark-antiquark po-
tential [58] and in this sense eq. (23) can be considered as
the hypercentral approximation of a two-body Cornell-like
potential. The model interaction is completed by adding a
standard spin-dependent hyperfine interaction Hhyp [53],
in order to reproduce the splittings within the SU(6) mul-
tiplets. The few free parameters (α, τ and the strength of
Hhyp) are fitted to the spectrum and the model is then
applied to calculate (i.e., to predict) various properties of
hadrons: the photocouplings [59], the transverse helicity
amplitudes for negative-parity resonances [60], the elastic
form factors [61], the longitudinal and transverse helicity
amplitudes of all the main resonances [62].

It is interesting to analyze in a systematic way the
Q2 behaviour of the helicity amplitudes in comparison
with the existing data. Figure 6 shows the results for the
transverse helicity amplitudes of the F15-resonance, re-
sults which are typical for a J > 1/2 state [60,62]: the
medium-high Q2 behaviour is quite well reproduced, show-
ing that the hyper-Coulomb part of the interaction 1/x
gives a fair account of the short range, while at low Q2

there is a lack of strength, particularly for the A3/2 am-
plitude. For J = 1/2 states [59,62], there are some mi-
nor problems in the low-Q2 region, but for the rest the
agreement with data is satisfactory. Major problems are
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Fig. 6. The transverse helicity amplitudes for the F15-
resonance obtained with the hCQM [62], compared with the
experimental data, taken by an old compilation [63], recent
JLab experiments [64] and PDG [65].

present for the Roper resonance [62], a fact that may sup-
port the idea of a particular status of the radial excita-
tions of the nucleon. Discrepancies are present also for the
Δ-resonance [62], a feature which is typical of all CQMs;
it is well known that the quark model, while reproducing
quite well the baryon magnetic moments, fails in the case
of the N -Δ transition magnetic moment. Taking into ac-
count the fact that the proton radius, calculated with the
wave functions corresponding to the potential of eq. (23),
turns out to be about 0.5 fm, the emerging picture is that
of a small quark core surrounded by an external region,
which is probably dominated by dynamical effects not
present in the CQM, that is sea-quark or meson cloud
effects [60].

These considerations are relevant in connection with
the issue of bare vs. dressed quantities. One should not
forget that the separation between bare and dressed quan-
tities is meaningful within a definite theoretical approach.
In CQM calculations the aim is not a fit but the descrip-
tion of observables, which in principle are dressed quanti-
ties (like baryon masses, magnetic moments, helicity am-
plitudes, etc.). In any case the identification of quark re-
sults with bare quantities is questionable in view of the
fact that CQs have a mass and some dressing is implicitly
taken into account. However, a consistent and systematic
CQM approach may be helpful in order to put in evidence
explicit dressing effects.

These effects have been recently calculated by means of
a dynamical model [66]. The meson cloud contribution to
various helicity amplitudes has been calculated and com-
pared with the hCQM predictions [67]. The two contri-
butions cannot be added, since they are calculated within
different frameworks, however it is interesting to note that
the meson cloud contribution is relevant at low Q2 and in
most cases it is important where the hCQM prediction
underestimates the data. An example of this situation is
given by the longitudinal and transverse helicity ampli-
tudes for the Δ excitation [67]. The case of the S1/2 am-
plitude is particularly interesting (see fig. 7): the hCQM
is almost vanishing and the meson cloud contribution ac-
counts for practically the whole strength.
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Fig. 7. The Q2-dependence of the N → ∆ longitudinal helic-
ity amplitude S1/2: superglobal fit performed with MAID [68]
(solid curve), predictions of the hypercentral constituent quark
model [55,67,62] (dashed curve), pion cloud contributions cal-
culated with the Mainz dynamical model [66] (dotted curve).
The data points at finite Q2 are the results of single-Q2 fits [67]
on recent data quoted in ref. [67].

The problem is how to introduce dressing in the calcu-
lations. One way is to adopt a hadronic approach: meson
and baryons (nucleon and nucleon resonances) are the rel-
evant degrees of freedom and the dynamics is given by
meson-baryon interactions. This is certainly a consistent
approach which has been used with success by various
groups with different techniques (see, e.g., [68–70]). An-
other possibility is given by the so-called hybrid models,
where the baryons are considered as three-quark states
surrounded by a pion cloud and a direct quark-meson cou-
pling is introduced. In this way the electromagnetic exci-
tation acquires contributions also from the meson cloud.
This approach is very useful for preliminary calculations
(see ref. [71]), however a more promising method is pro-
vided by the inclusion of dressing mechanisms directly at
the quark level. This means in particular the inclusion of
higher Fock components in the baryon state:

|ΨB〉 = Ψ3q |qqq〉 + Ψ3q qq̄ |qqq qq̄〉 (24)

and implies the necessity of unquenching the quark model,
as discussed in sect. 2.1. For the case of mesons, there
are pioneering works by Geiger and Isgur [72], where the
qq̄ pair creation mechanism is introduced at the micro-
scopic level within a string model. In the case of baryons,
the problem is more complicated and has been recently
treated performing the sum over intermediate quark loops
by means of group theoretic methods [73]. This approach
has been applied to the determination of the strange con-
tent of the proton [74] with good results. In this way we
have at our disposal a promising method for obtaining
an unquenched, that is dressed, formulation of the CQM.
The systematic calculation of baryon properties, such as
transition amplitudes (but also elastic form factors and
structure functions) in an unquenched CQM will supply
a set of dressed quantities to be compared directly with
data and will allow to understand where meson cloud or
(better) qq̄ effects are important.

One should, however, be aware of some problems, both
phenomenological and theoretical. From the phenomeno-
logical point of view, there is the problem of the sign of
the helicity amplitudes, which is actually extracted from
the meson electroproduction amplitude, the fact that the
PDG photon points are often non-consistent and the need
of new and systematic data. The main theoretical prob-
lems are connected with the inclusion of relativity. The
kinematic relativistic corrections seem to be not impor-
tant for the helicity amplitudes [75], however, relativity
should be consistently included both in the (unquenched)
CQM states and in the transition operators, leading to the
possibility of quark pair terms in the electromagnetic cur-
rent. In any case, the unquenching of the CQM is expected
to produce a substantial improvement in the theoretical
description of baryon properties. In particular, it will be
possible to calculate simultaneously the electromagnetic
processes and the strong decays and the baryons reso-
nances will acquire a non-zero width through the coupling
to the continuum part of the spectrum.

4.2 Nucleon resonances and hadron structure
calculations

4.2.1 What are the nucleon resonances?

To answer this question, it is useful to recall some text-
book (for example, see refs. [76–78]) definition of reso-
nances. Phenomenologically, a resonance (R) is identified
with a peak in a plot of the reaction cross-section as a
function of the collision energy E or invariant mass W .
At energies near the peak position, one can fit such data
near the peak by

σa,b(W ∼ mR) ∼ ρ(W )
|ΓR,a|

2|ΓR,b|
2

(W − mR)2 + |Γ0

2 |2
, (25)

where ρ(W ) is an appropriate phase space factor, mR the
position of the peak, and Γ0 the width of the peak. The
expression eq. (25) has the same function form of the de-
cay rate of an unstable system with a mass ∼ mR and a
lifetime τR ∼ 1/Γ0. It is thus natural to interpret that the
cross-section eq. (25) is due to the excitation of an unsta-
ble system during the collision. How this unstable system
is formed from the entrance and exit channels is a dynam-
ical question which can only be answered by modeling the
reaction mechanisms and the internal structure of all par-
ticles involved. We will address this question within the
Hamiltonian formulation of the problem. This is rather
different from the S-matrix approach.

Within the Hamiltonian formulation, there are two
ways to derive the expression eq. (25) depending on the
structure of the excited unstable system. Let us first con-
sider the one defined in Feshbach’s textbook (p. 23 of
ref. [78]). It can be stated as the following:

A resonance is formed in a process that the incident
projectile completely lose its identity, amalgamating with
the target system to form a compound state. Namely, the
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evolution of the whole system cannot be defined in terms
of the motion of the projectile and its transmutation.

The expression eq. (25) corresponding to this defini-
tion of resonances can be formulated by assuming that
the Hamiltonian of the system has the following form:

H = H0 + H ′ (26)

with
H ′ =

∑

a

ΓR,a, (27)

where ΓR,a defines the decay of an unstable system R
with a mass M0 into channel a. The reaction amplitude is
defined by

T (E) = H ′ + H ′ 1

E − H + iǫ
H ′ (28)

From eqs. (27), (28), it is straightforward to see that the
reaction cross-section for b → a can be written as

σa,b(W ) = ρ(W )|TR
a,b(W )| (29)

with

TR
a,b(W ) =

ΓR,a(ka)ΓR,b(kb)

W − M0 − Σ(W )
, (30)

where ka is the on-shell momentum of channel a and

ΣR(W ) =
∑

a

〈R|Γ †
R,a

1

W − H0 + iǫ
ΓR,a|R〉 (31)

We can cast eq. (30) into

TR
a,b(W ) =

Γ ∗
R,a(ka)ΓR,b(kb)

W − MR(W ) + iΓ tot(W )
2

, (32)

where

MR(W ) = M0 + Re(ΣR(W )), (33)

Γ tot(W )

2
= − Im(ΣR(W )). (34)

By using eqs. (29) and (32) to fit the expression
eq. (25), the parameters of the Hamiltonian are then re-
lated to the data by the following relations:

mR = MR(W = mR) = M0 + Re(ΣR(mR)), (35)

Γ0 = Γ tot(W = mR) = −2 Im(ΣR(mR)). (36)

Equations (35), (36) then allow us to use the experimental
values mR and Γ0 to extract the property of the unsta-
ble system, specified by M0 and ΓR,a of the Hamiltonian,
through the evaluation of eqs. (31)–(33) at energies near
W = mR.

The second mechanism which can also yield a cross-
section of the form of eq. (25) is

An unstable system is formed during the collision by
an attractive force between the interacting particles which
do not lose their identities.

The simplest parameterization of an attractive force is
a separable potential

H ′ = g†
1

C
g. (37)

The solution of eq. (28) then becomes

T (W ) =
g∗(k)g(k)

C − z(W )
, (38)

where

z(W ) = 〈g|
1

W − H0 + iǫ
|g〉. (39)

If the parameters of H ′ are chosen such that C −
Re(z(W )) → 0 on the physical world W → W0, where
W0 is a real number, we can expand

C − z(W ) =

[C − R(W0) − R′(W0)(W − W0) + · · ·] − iI(W )

∼ −R′(W0)
[

W−W0−
1

R′(W0)
(R(W0)−C) + i

1

R′(W0)
I(W )

]

, (40)

where R(W0) = Re(z(W0)), I(W ) = Im(z(W )), and
R′(W0) = ∂ Re(z(W ))/∂W |W=W0

. We then can write at
W → W0

T (W ∼ W0) =

−g∗a(k0)
1

R′(W0)
gb(k0)

W − [W0 + 1
R′(W0)

(R(W0) − C)] + i 1
R′(W0)

I(W0)
. (41)

The above expression can give the resonant cross-section
eq. (25) if the parameters of g and C can be chosen to
satisfy

mR = W0 +
1

R′(W0)
(R(W0) − C), (42)

Γ0

2
=

1

R′(W0)
I(W0). (43)

4.2.2 Dynamical models for investigating nucleon
resonances

From the above two examples, we see that the resonant
cross-section eq. (25) can correspond to two very different
internal structures of the excited unstable system. The
nucleon resonances we are interested in correspond to the
unstable systems defined by the Hamiltonian eq. (27). For
the meson-nucleon reactions, such unstable systems are
due to the excitation of the quark-gluon substructure of
the nucleon.

In reality, the situation is much more complicated. In
the reactions involving composite systems, such as atoms,
nuclei and nucleons, the excitations of resonances always
involve non-resonant direct interactions. For example, the
non-resonant interactions in pion-nucleon scattering could
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be due to the exchange of the ρ-meson. The reaction for-
mulation for analyzing such reactions is well presented in
Feshbach’s textbook [78]. We now briefly describe how
such a formulation can be used to investigate nucleon res-
onances in meson-nucleon reactions.

The starting point is to divide the Hilbert space into a
P -space for the entrance and exit channels and Q for the
rest. One can cast the equation of motion in the P -space as

(E − Heff )PΨ = 0, (44)

where

Heff = HPP + HPQ
1

E(+) − HQQ
HQP . (45)

Here E(+) = E + iǫ specifies the boundary condition and
we have defined projected operator HPP = PHP , HPQ =
PHQ and HQQ = QHQ. Now consider the eigenstates of
HQQ which can be discrete bound Φs or unbound Φǫ,α

states

HQQΦs = ǫsΦs, (46)

HQQΦ(ǫ, α) = ǫΦ(ǫ, α) (47)

with

〈Φs|Φs′〉 = δs,s′ , (48)

〈Φ(ǫ, α)|Φ(ǫ′, α′)〉 = δα,α′δ(ǫ − ǫ′). (49)

We then expand

Heff − HPP =
∑

s

HPQ|Φs〉〈Φs|HQP

E − ǫs

+

∫

dα

∫

dǫ
HPQ|Φ(ǫ, α)〉〈Φ(ǫ, α)|HQP

E(+) − ǫ
. (50)

One can see from the above equation that rapid energy
dependence of Heff will occur as the energy approaches
one of the bound-state energy ǫs. This is the origin of
rapid energy dependence of the cross-sections. As shown
in Feshbach’s book (pp. 158–162), the amplitude at E ∼ ǫs

can be written as

Tfi = TP
fi +

〈χ(−)|HPQ|Φs〉〈Φs|HQP χ(+)〉

E − ǫs − 〈Φs|WQQ|Φs〉
(51)

with

WQQ = HQP
1

E(+) − ĤPP

HPQ, (52)

where

ĤPP = HPP +

∫

dα

∫

dǫ
HPQ|Φ(ǫ, α)〉〈Φ(ǫ, α)|HQP

E(+) − ǫ
(53)

and χ(±) are the solutions of

(E − ĤPP )χ(+) = 0, (54)

(E − ĤPP )χ(−)∗ = 0. (55)

In this formulation, one bound state of HQQ will corre-
spond to one resonance. Namely, one can predict whether
a resonance can appear in a particular partition of Hilbert
space by examining whether bound states can be gener-
ated from the Hamiltonian when the coupling with the
states P is turned off.

We now point out that the dynamical model developed
in ref. [8] (MSL model) for investigating meson-baryon re-
actions is completely consistent with the formulation given
in eqs. (51)–(55). To see this, one just make the following
identifications:

– the P -space contains reaction channels MB = πN ,
γN, ηN, πΔ, ρN, σN and ππN ,

P =
∑

MB

|MB〉〈MB| + |ππN〉〈ππN |; (56)

– HQQ describes the internal structure of the bare N∗

states

HQQ|N
∗
i 〉 = M0

N∗

i

|N∗
i 〉,

Q =
∑

i

|N∗
i 〉〈N

∗
i |; (57)

– HPP defines the non-resonant meson-baryon interac-
tions

HPP =
∑

MB

|MB〉

[

√

mB + p2 +

√

mB + k2

]

〈MB|

+
∑

MB,M ′B′

vMB,M ′B′ +
∑

MB

[vMB,ππN + vππN,MB ]

+vππN,ππN ; (58)

– HQP defines the coupling of the internal structure of
N∗ with the reaction channels

HQP =
∑

N∗

[

∑

MB

ΓN∗,MB + ΓN∗,ππN

]

. (59)

With some inspections, one can see that equations pre-
sented in the sect. 3 of ref. [8] (MSL model) are completely
equivalent to eqs. (51)–(55). If we set MB = πN, γN and
Q = |Δ〉〈Δ|, and neglect the ππN channel, we then obtain
the formulation of the SL model [11].

4.2.3 Relations with hadron structure calculations

We now note that ǫs and Φs in eqs. (46) and (51) relate
the structure calculations for the unstable systems in the
Q-space and the reaction amplitudes in the P -space. In
the MSL formulation, these are the bare mass M0

N∗

i

and

wave function |N∗〉 of the discrete bound states defined
by eq. (57). These bare N∗ states can be considered as
the excited states of the nucleon if its coupling with the
reaction channels is turned off. It is therefore natural to
speculate that the bare N∗ states in the SL and MSL mod-
els correspond to the predictions from a hadron model
with confinement force, such as the well-developed con-
stituent quark model with gluon-exchange interactions.
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This was first noticed in the SL model in 1996. The idea
was later pursued in ref. [13] in 2000 in an attempt to di-
rectly calculate the πN scattering amplitude in S11 up to
W = 2GeV starting from several constituent quark mod-
els. In the later N(e, e′N) analysis [12,79] based on the
SL model, the bare γN → Δ(1232) form factors were also
found to be close to the constituent quark model predic-
tions. To consider constituent quark models with meson-
exchange residual interactions, the SL and MSL models
must be modified to account for the contribution due to
the continuum in the Q-space; namely the effects due to
the second term in the right-hand side of eq. (53).

It is unlikely that the Lattice QCD calculation
(LQCD) can account for the channel coupling effects and
unitarity conditions, which are the essential elements of a
dynamical coupled-channel analysis, rigorously in the near
future. It is a challenging problem to relate the LQCD cal-
culations to the information which can be extracted from
the full solution eq. (51) of a dynamical coupled-channel
analysis.

One possibility is to perform a LQCD calculation
which defines a HQQ of a dynamical coupled-channel anal-
ysis. At the present time, perhaps the predictions from
a quenched LQCD with heavy quark mass and no chi-
ral extrapolation correspond to the bare parameters re-
sulted from the dynamical coupled-channel analysis being
performed at EBAC. This is based on the argument that
the quark-loop contributions are suppressed at the heavy
quark limit and the LQCD mainly accounts for the gluonic
interactions which are not in the P -space of MSL model.

5 Conclusion

This work was motivated by problems relating the reliable
results from partial-wave and amplitude analysis, which
are the parameters of dressed scattering matrix singulari-
ties, and the results of quark models, which are usually
given as the properties of bare resonances. Undressing
dressed scattering matrix singularities in coupled-channel
models involves model-dependent hadronic mass shifts,
which arise from the unmeasurability of off-shell effects
accompanying the dressing procedure. It is legitimate to
extract bare quantities in coupled-channel models within
the framework of a well-defined model, but their inter-
pretation requires keeping track of hadronic mass shifts
produced by off-shell ambiguities. The best meeting point
between quark model predictions and analyses of experi-
mental data are dressed scattering matrix singularities, as
although dressing (unquenching) the quark model is com-
plicated, it is in principle a solvable problem. This will
require careful definition and checking of the procedures
for extracting poles from energy-dependent partial waves
or directly from partial-wave data.
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