Classical Mechanics — TEST I

Each question carries the same credit.

- 1. Use Lagrange's eq. to obtain the equation of motion for a particle constrained to move (a) vertically and (b) horizontally near the surface of the earth, assuming a dissipation function bv^2 . In each case, assume an initial velocity v_0 and integrate to find v(t).
- 2. (a) For a spherical pendulum (a rigid rod of negligible mass, with a mass m suspended from it), write down the Lagrangian in terms of two independent coordinates.
 - (b) Consider a double pendulum which consists of a mass m_2 at the end of a rigid weightless rod of length ℓ_2 ; this rod itself is suspended from a mass m_1 at the end of a rigid weightless rod of length ℓ_1 . The system is constrained to move in a plane. Write down the Lagrangian in terms of independent coordinates.
- 3. A particle moves under an attractive central force

$$f(r)=-rac{l^2}{mr^3}\left(1+rac{d^2}{r^2}
ight)$$

where l is angular momentum and d is a constant. Find and sketch the equivalent one-dimensional potential V'. Show that a spiral path leads to this form of force. Discuss the possible motion.

- 4. Write a paragraph, keeping mathematical detail to a minimum, on each of the following:
 - (a) Holonomic and non-holonomic constraints.
 - (b) Uses of the Lagrange Multiplier method.
 - (c) Symmetry & conservation laws.