Classical Mechanics — Final Exam

Each question carries the same credit.

- 1. Consider a system of particles in which the *i*th particle experiences a total force $\mathbf{F}_i + \mathbf{f}_i$: the first term represents conservative forces, and the second term is a frictional force linear in the velocity. Assume that the motion of the system is in a steady state, with energy being continually supplied to it as required to compensate for the frictional losses. Apply the virial theorem to this system.
- 2. Three identical point masses are located at cartesian coordinates (x, y, z) = (3a, 0, 2a), (0, 2a, 0), and (2a, 0, 3a). Find the principal moments of inertia about the origin and a set of principal axes.
- 3. Find the eigenfrequencies of small vibrations for a symmetric diatomic molecule, and describe each normal mode. Normalize all eigenfunctions that arise in your solution.
- 4. For what conditions on the four constants α , β , γ and δ does

$$Q=q^{lpha}p^{eta}, \qquad P=q^{\gamma}p^{\delta}$$

represent a canonical transformation for a system with a single degree of freedom? Verify that $\alpha = 1$ either gives the identity transformation or a transformation that is not canonical.

- 5. Apply the Hamilton-Jacobi method to find the position as a function of time for a body which is released from rest at a height h above the surface of the earth. You may assume a constant acceleration g, and air resistance can be neglected.
- **6.** Write a paragraph on any TWO of the following. Include mathematical details where necessary, but pay particular attention to the underlying concepts.
 - (a) The physical significance of products of inertia (off-diagonal elements in the inertia tensor of a body).
 - (b) The logistic map equation and Lyapunov exponents.
 - (c) Infinitesimal canonical transformations.