S. Bass, P. Danielewicz and S. Pratt – PRL 85, 2689 (2000) Balance Functions: A Signal of Late-Stage Hadronization

Motivation

Suppose one could identify balancing charges? (e.g. K^+,K^-)

Hadronic Picture

- Hadrons appear at $\tau \approx$ 0.5 fm/c.
- ullet String dynamics separate balancing Q ar Q by $\Delta y \sim 1$.
- Strangeness annihilates with time, reduces probability of small Δy .

- Hadronization at 5-10 fm/c into collision, $T \approx 165$.
- Many $qar{q}$ pairs created during hadronization.
- ullet Balancing charges separated by $\Delta y \sim v_{
 m therm}$.

Narrow distribution in Δy signals late production of qar q pairs. novel phase persisted substantial time

Creation of qar q Pairs at RHIC

During hadronization, $qar{q}$ pairs are created for three reasons

- 1. Gluons ightharpoonup Hadrons. At fixed T, each gluon should make pprox 1 hadron due tropy conservation. to
- Quarks → Hadrons entropy conservation. At fixed T, each quark should make pprox one hadron due
- 3. Non. Pert. Vacuum \rightarrow Hadrons. (e.g. DCC) Probably a small fraction of particle creation.
- quarks should more than double during hadronization. Each hadron contains at least two quarks, so number of
- Coalescing quark gas would require rise in T to keep $\Delta S \geq 0$.

What are Balance Functions?

charge with momentum p_2 . functions describe the probability of seeing a particle of opposite Given the existence of a particle with momentum p_1 , balance

$$B(p_2|p_1) \equiv \frac{1}{2} \left\{
ho(+Q,p_2|-Q,p_1) -
ho(-Q,p_2|-Q,p_1) +
ho(-Q,p_2|+Q,p_1) -
ho(+Q,p_2|+Q,p_1)
ight\}$$

Here $ho(b,p_2|a,p_1)$ is the conditional probability,

$$ho(b,p_2|a,p_1) = rac{N(a,p_1;b,p_2)}{N(a,p_1)}$$

Common binning choice:

- 1. p_1 is anywhere in detector.
- 2. p_2 refers to relative rapidity.

or to specific charges, e.g. (all antibaryons)/(all baryons). Can be applied to specific particle/antiparticle pairs, e.g. π^+/π^- ,

Scott Pratt

Β(Δ

Properties of Balance Functions Balance Functions: A Signal of Late-Stage Hadronization

- Normalized to unity: If +Q/-Q refers to ALL +/- particles $\sum\limits_{p_2}B(p_2|p_1)=1$
- Works for both cases:
- 1. $\Sigma_i \, q_i = 0$, e.g. strange/antistrange 2. $\Sigma_i \, q_i \neq 0$, e.g. baryon/antibaryon
- Normalization reduced for finite acceptance or for using subset of particles, e.g. analyze only K^+/K^- .
- May be analyzed event-by-event.

Scott Pratt

Balance Functions: A Signal of Late-Stage Hadronization

Statistical Error and Multiplicity M

$$\rho(b,p_2|a,p_1) = \frac{N(a,p_1;b,p_2)}{N(a,p_1)}$$

- Statistical error for numerator $\propto \sqrt{M^2}$
- Denominator also increases $\propto M$
- Error $\propto 1/\sqrt{N_{
 m events}}$, independent of M
- $par{p}$, K^+K^- and $\pi^+\pi^-$ give similar errors
- 10^5 events makes good balance function.

Balance Functions: A Signal of Late-Stage Hadronization

Balance **Functions from Jets**

- Similar analyses performed with:
- ppdata D. Drijard et al., NPB **155** (1979) 269.
- D. Drijard et al., NPB 166 (1980) 233 I.V. Ajinenko et al., ZPC **43** (1989) 37.
- eedata:
- M. Althoff et al., ZPC 17 (1983) 5. R. Brandelik et al., PLB 100 (1981) 357.
- H. Aihara et al., PRL **53** (1984) 2199.
- H. Aihara et al., PRL 57 (1986) 3140.
- P.D. Acton et al., PLB 305 (1993) 415
- Several pairs analyzed, e.g. AA
- JETSET fits data.

Thanks to T. Sjöstrand for references!

Relation to Hadronization Time

 $B(\Delta y)$ narrower for late-stage hadronization for two reasons: 1. Temperature is lower,

$$\langle \Delta y
angle pprox \sqrt{2T/M}$$

2. High initial dv/dz separates early-produced pairs through diffusion.

B(**Δ**y)

T = 225

.

 $\tau = 9$, T=165

 K^+/K^- Balance Function

0.0

0

 \sum_{i}

 $B(\Delta y)$ provides signal of late stage hadronization.

Scott Pratt

Thermal Model

Bjorken 1-d expansion:

Time: $au = \sqrt{t^2-z^2}$

Position: $\eta = \tanh^{-1}(z/t)$ Collective velocity: $y = \eta$.

- Pairs generated thermally at Δ same η with same collective Δ
- rapidity y. $B(\Delta y)$ determined by T/m. Heavier particles provid Heavier particles greater sensitivity. provide

Diffusion: An Analytic Picture

Diffusion Eq:

$$rac{\partial}{\partial au}f(au,\eta)=-rac{eta}{ au}rac{\partial^2}{\partial \eta^2}f(au,\eta),$$

$$eta = v_t/(n au\sigma)$$

Solution:

ution:
$$f(au,\eta) \sim \exp\left(-rac{\eta^2}{2\sigma_\eta^2}
ight),$$

$$\sigma_\eta^2 = 2\beta \ln(\tau/ au_0)$$

- No diffusion when 1. $\beta=0$ (Coll. Rate $\rightarrow \infty$) 2. $\tau=\tau_0$ (No Collisions)
- σ_η largest for small au_0 .

$$\sigma_{\mathrm{balance}}^{2}=2\left(\sigma_{y,\mathrm{therm.}}^{2}+\sigma_{\eta}^{2}
ight)$$

Collisions and Annihilations: A Simple Model

Procedure

Generate pair thermally at

 $\eta=0, \tau=\tau_0.$

Follow straight-line trajecto-

domly in $\ln \tau$ ries between collisions. Perform $N_{
m coll}$ collisions ran-

Readjust momenta to local \bigcirc 0.5 thermal conditions. thermal conditions. $T=225-7.5(au-1), au_f=15$

Annihilations: • Modeled

pairs

- λ convoluting
- If annihilation rate = ation rate → no effect. cre-

Collisions/Annihilations magnify sensitivity to creation time!

Collisions: Model Summary

If $au_0pprox 1$ fm/c, $N_{
m coll.}\sim 6$

If $au_0pprox 9$ fm/c, $N_{
m coll.}\sim 2$

Even pions become sensitive to hadronization time!

Conclusions

- Provide clear signal of late stage hadronization a long-lived QGP.
- Strangeness/Antibaryon production issues can be studied.
- Gating on p_t allows one to study production as function of r_{\perp} .

Scott Pratt

NSCL/MSU

Far reaching implications

For example,

- near Δy =0, characteristic of $T\sim 165$ MeV, then either A. If measured balance functions have significant extra strength
- Large numbers of new charges were created late in the reaction, e.g. hadronization of gluons.
- Mean free paths of partons were anomalously short during very early times

B. If $pp \\& AA$ balance functions appear identical,

- Gluonic modes did not contribute to entropy for a substantial
- Quarks and antiquarks did not contribute to entropy as separate particles (unless temperature jumped at hadronization).
- Most explanations of strangeness enhancement are wrong.
- Most jet energy loss calculations are misguided
- QGP explanations of J/Ψ suppression are misguided.