Candidacy Exam Fall 2006

Statistical Mechanics

[30 pts] 1. Consider a system which has three particles that can occupy one of two states with energies 0 and ϵ . Write down the canonical partition functions corresponding to:

- (a) distinguishable particles (with classical statistics)
- (b) spin 0 Bosons.
- (c) spin 1/2 Fermions.

Compare the mean energies of each system (a-c) in the limits:

- (d) $T \to \infty$
- (e) $T \rightarrow 0$

[35 pts] 2. A (hypothetical) substance can be in two phases with free energies

$$F_1 = \frac{1}{8} \frac{a}{T} \frac{N^2}{V}$$
 and $F_2 = \frac{1}{9} \frac{b}{T} \frac{N^3}{V^2}$. (1)

where a and b are constants. Find the pressure, P, and densities $\rho_1 = N_1/V_1$ and $\rho_2 = N_2/V_2$, when the two phases coexist in equilibrium.

[35 pts] 3. Consider a gas of non-interacting bosons in a volume V above the Bose condensation temperature, T_0 . The dispersion relation for the single particle energy states is given by $\epsilon(p) = Ap^{\sigma}$ where p is the magnitude of the momentum and σ is some constant.

(a) Show that the pressure, P, and energy, E, are related through

$$P = \alpha \frac{E}{V} \tag{2}$$

and find the proportionality constant α .

(b) Is this relationship valid below the Bose condensate temperature $(T < T_0)$? (Note: you can answer this part without answering part (a).)