Candidacy Exam – Fall 2010

Quantum Exam

1.) Assume a particle of mass \(m \) in a one dimensional system with a potential \(V(x) = ax \) where \(a \) is a constant. Also assume a trial normalized wave function \(\psi \):

\[
\psi = \left(\frac{2b^4}{\pi} \right)^{1/4} e^{-bx^2},
\]

where \(b \) is a parameter \(\geq 0 \).

(10 points) a) Is the given \(\psi \) an eigenstate of the Hamiltonian \(H \)?

(20 points) b) For the given \(\psi \), calculate the expectation value of \(H \).

(10 points) c) Let \(E_0 \) be the notation for the ground state energy of the system and \(E_U \) be an upper bound, that is \(E_0 \leq E_U \). Determine the lowest value of \(E_U \) you can find using \(\psi \).

Possibly useful integrals:

\[
\int_0^\infty dx \ x^{2n} e^{-x^2} = \frac{1 \cdot (3) \cdots (2n-1) \sqrt{\pi}}{2^{n+1}}
\]

\[
\int_0^\infty dx \ x^{2n+1} e^{-x^2} = \frac{n!}{2}
\]

\[
\int_0^\infty dx \ e^{-x^2} = \frac{1}{2} \sqrt{\pi}
\]

2.) The spin-orbit operator is \(2 \vec{L} \cdot \vec{S} \). Let \(\vec{J} = \vec{L} + \vec{S} \), where \(\vec{L} \) is orbital angular momentum, \(\vec{S} \) is spin, and \(\vec{J} \) is total angular momentum.

(15 points) a) Show that \([S^2, \vec{L} \cdot \vec{S}] = [L^2, \vec{L} \cdot \vec{S}] = [J^2, \vec{L} \cdot \vec{S}] = 0 \).

(10 points) b) Derive the eigenvalues of the \(2\vec{L} \cdot \vec{S} \) operator.
3.) In a representation where the eigenspinors of the \hat{S}_z operator are the basis vectors $(\frac{1}{\sqrt{2}}, 0)$ and $(0, \frac{1}{\sqrt{2}})$, the \hat{S}_z operator is
\[
\frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]
and the \hat{S}_x operator is
\[
\frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]

(10 points) a) Find the eigenvalues and normalized eigenspinors of \hat{S}_x.

(10 points) b) In an initial state of $\chi = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{pmatrix}$, \hat{S}_x is measured. What are the possible results, and their probabilities?

(10 points) c) Subsequently, \hat{S}_z is measured. What are the possible results and their probabilities?

(5 points) d) What would have been the possible results and their probabilities if only \hat{S}_z was measured (i.e. \hat{S}_x had not been measured)?