_

1.	(10 pts.)	a).	Use Maxwell's equations in vacuum and in the absence of charges and currents to show that the electric field \vec{E} and magnetic field \vec{B} satisfy individually wave equations of similar form.
	(10 pts.)	b)	Assume that an electromagnetic wave with wave vector \vec{k} is described by equations $\vec{E}(\vec{r},t) = \vec{E}_0 \sin(\omega t - \vec{k} \cdot \vec{r})$ and $\vec{B}(\vec{r},t) = \vec{B}_0 \sin(\omega t - \vec{k} \cdot \vec{r})$, where ω is the wave's angular frequency. Show that \vec{E} , \vec{B} and \vec{k} form an orthogonal triad of vectors.
	(10 pts.)	c)	Show that the magnitude of \vec{E}_o and \vec{B}_o of the wave are related by a proportionality constant.
	NOTE:	⊽ x (⊽	$(\mathbf{x} \mathbf{\vec{A}}) = \mathbf{\nabla} (\mathbf{\nabla} \cdot \mathbf{\vec{A}}) - \mathbf{\nabla}^2 \mathbf{\vec{A}}$, for any vector $\mathbf{\vec{A}}$.
2.	Consider a long cylinder, surrounded by vacuum, of radius R with volume charge density where r is the distance from its axis and k is a constant.		
	(15 pts.)	a)	Find the electric field vector inside and outside the cylinder.
	(15 pts.)	b)	Find the electric potential inside and outside the cylinder.
3.	Consider a long straight wire of length L that carries a steady current I.		
	(15 pts.)	a)	Find the magnetic vector potential at a perpendicular distance r from the midpoint of the wire.
	(5 pts.)	b)	Find the magnetic field vector at distances $\mathbf{r} \ll \mathbf{L}$. Your answer from part (a) may be useful.
	NOTE: \int	$\frac{dx}{\sqrt{a^2+x^2}}$	$\frac{1}{2} = \ln(x + \sqrt{x^2 + a^2})$
4.	-	-	of radius R and conductivity Σ is at time t = 0 uniformly charged with y ρ_o . Find, as a function of time, the sphere's:

- (10 pts.) a) volume charge density
- (10 pts.) b) surface charge density.