

Electricity and Magnetism

Instructions: Work each of the three problems. The total credit is 100 pts.

1. A dielectric sphere of radius a is centered at the origin. The region of space outside the sphere is air (or vacuum).

(a) (24 pts) Find the potential $\Phi(r, \theta)$ at any point in space, both inside and outside the sphere, given that the potential on the surface is

$$\Phi(a, \theta) = A + B \sin^2 \theta ,$$

where A and B are constants. Assume that the potential vanishes at infinity. Here r and θ are standard spherical polar coordinates.

(b) (10 pts) Determine the sphere's net charge. Under what conditions on A and B does the sphere carry a nonzero net charge?

2. (a) (10 pts) Give an integral equation for the magnetic field, $\mathbf{B}(\mathbf{r})$, produced by an arbitrary current loop that carries current I . Carefully define all symbols in your equation. (Use a diagram.)

(b) (23 pts) Use your result from part (a) to derive an expression for the magnetic field, $\mathbf{B}(\mathbf{0})$, at the center of a circular current-carrying loop of radius a . The loop lies in the $z = 0$ plane with its center at the origin.

3. (a) (10 pts) State Maxwell's differential equations in macroscopic form (*i.e.*, in a general medium).

(b) (13 pts) Given the constitutive relations (in SI units) that $\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}$ and $\mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{M}$, use the inhomogeneous Maxwell equations to determine the density of bound charges ρ_b ($= \rho_{pol}$) and the corresponding current density \mathbf{J}_b in terms of the polarization \mathbf{P} and magnetization \mathbf{M} . (*Hint:* Inhomogeneous equations are those involving source terms.)

(c) (10 pts) Use your results from part (b) to show that ρ_b and \mathbf{J}_b satisfy a continuity equation.

Possibly useful information:

The first few Legendre polynomials are:

$$P_0(x) = 1$$

$$P_1(x) = x$$

$$P_2(x) = \frac{1}{2}(3x^2 - 1)$$

$$P_3(x) = \frac{1}{2}(5x^3 - 3x)$$

$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$