CLASSICAL ELECTRODYNAMICS II

Homework Set 1 January 24, 2020

- 1. Consider a medium where the macroscopic fields satisfy the constitutive relations, $\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}$ and $\mathbf{H} = \mathbf{B}/\mu_0 \mathbf{M}$, with \mathbf{P} the polarization and \mathbf{M} the magnetization. Determine ρ_b (the density of bound charges) and \mathbf{J}_b (the corresponding current density) in terms of \mathbf{P} and \mathbf{M} such that ρ_b and \mathbf{J}_b satisfy the charge continuity equation and the fields satisfy Maxwell's equations.
- 2. A sphere of radius a carries a uniform surface charge density σ . The sphere is rotated about a diameter with constant angular velocity ω .
 - (a) Calculate the current density $\mathbf{J}(\mathbf{r})$ for the rotating sphere. Take the origin to lie at the center of the sphere and assume that the axis of rotation is along \hat{z} .
 - (b) Calculate the vector potential $\mathbf{A}(\mathbf{r})$ both inside the sphere and outside the sphere.
 - (c) Use the form of the vector potential outside of the sphere to determine the magnetic dipole moment **m** of the current distribution.